
Ben-Gurion University
of the Negev

BGU Sequential Signal Mixing Aggregation for Message Passing Graph Neural Networks
Mitchell Keren Taraday 1 Almog David 1 Chaim Baskin 2

1Technion 2Ben-Gurion University of the Negev

Sum-Based Aggregations: Solid Theory, Poor Performance

Aggregation functions are a key component in the design of message passing graph neural networks.

For message-passing networks to achieve their full expressive potential, the chosen aggregators must be

both permutation-invariant and expressive enough to distinguish between distinct neighbor sets. The

pioneering DeepSets sum-based construction introduced the first such aggregation function.

Despite their theoretical guarantees, sum-based aggregations lag behind other aggregation functions

which more commonly used in practice (e.g PNA).

A Possible Explanation: Neighbor Mixing

We suggest that a possible explanation for this gap is the inability of sum-based aggregators to ”mix”

features belonging to distinct neighbors. We define neighbor mixing as follows:

We define the neighbor mixing of the `-th aggregation output with respect to the neighbor pair (i, j):

mix(`)
i,j :=

∥∥∥∥∥ ∂2

∂xi∂xj
γ(`)(x1, ..., xn)

∥∥∥∥∥
2

Intuitively, sum-based aggregators have small mix(`)
i,j values as the result of the local pooling operation

is summed across the neighbors. Indeed, given γ(x1, ..., xn) =
∑n

k=1 φ(xk) we have:

∂2

∂xi∂xj

n∑
k=1

φ(`)(xk) = 0

Formally, to account formixing that may occur in any subsequent transformationwe derive the following

bound for aggregations of the form γ(x1, ..., xn) = ρ
(∑n

k=1 φ(xk)
)
:

mix(`)
i,j ≤

∥∥Jφ(xi)
∥∥

2 ·

∥∥∥∥∥∥H
ρ(`)

 n∑
k=1

φ(xk)

∥∥∥∥∥∥
2

·
∥∥Jφ(xj)

∥∥
2

Where Jφ(.) is the Jacobian matrix of φ and H
ρ(`)(.) is the Hessian matrix of the `-th output of ρ.

In a Search for an Alternative: DeepSets from a Convolutional Point of View

Given a multiset x = {x1, ..., xn} its corresponding DeepSets polynomial is defined as:

px(t) :=
n∏

i=1
(t − xi)

The coefficients (ek(x))nk=0 are permutation invariant and together form an ensemble of separators.

Instead of describing a polynomial by its coefficients, one can represent a polynomial by evaluating it on

some fixed set of points. Specifically, by choosing the evaluation points to be the roots of unity we get

the discrete Fourier transform (DFT) of the polynomial coefficients:

ζj(x) =
n∑

k=0
ek(x) · e−2πij

n+1k (j = 0, ..., n)

The coefficients of px(t) can be computed by transforming the coefficients of each

pi(t) to the Fourier domain, performing elementwise multiplication and then

transforming back to the coefficients domain. According to the circular convolution

theorem, this exactly amounts to sequentially convolving a padded version of the

coefficients of each pi(t).

Consequently, scalar multisets {x1, ..., xn} can be represented by an

invariant-separating map fconv

fconv(x) =
n

~
i=1

h(xi)

Where h : R → Rn+1 is an affine map and~ is the circular convolution operator.

The True Magic: Generalization to Multidimensional Features

“How does the DeepSets polynomial can be efficiently extended to handle vector

features?”

The key idea underlying our answer to this question is to encode each feature vector

as another polynomial, and then to reduce the problem to the scalar case.

We encode each element Xi ∈ Rd belonging to the multiset X =
{X1, ..., Xn} as a polynomial of another variable z:

Enc(Xi) =
d∑

j=1
Xij · zj−1

Then, we perform a reduction to the scalar case by replacing each Xi
with Enc(Xi):

pi(t, z) := t − Enc(Xi) = t −
d∑

j=1
Xij · zj−1

And define the generalized DeepSets polynomial:

pX(t, z) :=
n∏

i=1
pi(t, z) =

∑
k,l

ek`(X) · tkz`

Where ek`(X) is the coefficient of tkz` in pX(t, z).

This leads us to an analogous result for the d-dimensional case.

Vector multisets X = {X1, ..., Xn} can be represented by an invariant and separating
map fconv:

fconv(X) =
n

~
i=1

Φ(Xi)

WhereΦ : Rd → Rm1×m2 is an affinemap,~ is the 2D circular convolution operator

and the number of separators is m = m1 × m2 ∈ O(n2d).

Sequential Signal Mixing Aggregation (SSMA)

Combining our construction with an MLP compressor yields the ”vanilla” version of

SSMA. We consider some additional practical aspects:

1. Implementing the convolution. The circular convolution is implemented by

applying FFT, performing product along the neighbors and then transforming the

result back using IFFT.

2. Normalizing the circular convolution. we normalize the element-wise magnitudes

of the product by taking their geometric means.

3. Low-rank compressor. Since the number of parameters in the MLP compressor

rapidly increases with the representation dimension m, we split it into two

consecutive linear layers which effectively serve as a low-rank factorization of the

original weight matrix.

4. Neighbor selection methods. To address extremly dense neighborhoods (e.g in

transductive settings) we employ a neighbor selection technique that reduces the

original neighborhood to a new set of κ neighbors. We draw inspiration from Graph

Attention Networks (GAT) and map the neighbors into κ attention slots.

Finally we obtain the full architecture of SSMA:

FFT

v

u

w

t

h

h

FFT

FFT

FFT-1

h

x ���

x

Benchmarking SSMA

We test the effectiveness of SSMA by incorporating it into popular MPGNN architectures.

We evaluate both original and augmented architectures across a wide range of benchmarks.

We present here a subset of the results for TU and ZINC datasets.

Module ENZYMES ↑ PTC-MR ↑ MUTAG ↑ IMDB-B ↑ ZINC ↓

GCN 51.0±10.63 59.85±4.04 84.23±9.86 68.80±3.49 0.347±0.01

GCN + SSMA 54.83±7.55 62.29±9.33 89.79±6.71 75.2±2.9 0.280±0.02

GAT 50.67±4.92 65.53±8.41 75.51±11.72 51.0±6.07 0.386±0.025

GAT + SSMA 56.67±3.72 66.41±5.69 89.19±4.58 74.5±4.14 0.223±0.028

GATv2 44.83±5.96 56.47±7.57 77.26±13.15 47.0±5.27 0.396±0.006

GATv2 + SSMA 52.50±8.43 61.64±6.80 88.80±11.80 72.8±4.92 0.235±0.003

GIN 49.50±4.58 60.46±9.10 86.45±8.17 71.3±3.97 0.252±0.007

GIN + SSMA 51.69±8.04 61.28±9.23 90.51±6.97 74.1±5.02 0.222±0.003

GraphGPS 48.33±6.71 61.41±6.91 79.91±10.23 69.6±5.54 0.251±0.012

GraphGPS + SSMA 49.17±3.15 63.02±4.93 86.07±7.95 71.1±4.79 0.22±0.005

PNA 52.50±4.60 58.41±6.66 84.19±9.44 71.9±4.46 0.192±0.001

PNA + SSMA 52.92±7.34 62.14±5.54 88.29±8.46 74.1±4.23 0.172±0.001

ESAN - 69.2±6.5 91.1±7.0 77.1±3.0 0.102±0.003

ESAN + SSMA - 77.89±5.62 96.32±3.37 80.6±2.15 0.096±0.002

Improvement (%) 7.2 5.3 8.9 17.7 20.36

And an additional subset of the results for the LRGB and OGB datasets:

Module

LRGB OGB

Peptides-f Peptides-s Arxiv Products molpcba

AP ↑ MAE ↓ Accuracy ↑ Accuracy ↑ AP ↑

GCN 61.1±1.04 0.28±0.01 65.6±0.55 63.8±3.45 0.21±0.01

GCN + SSMA 63.3±1.42 0.26±0.02 66.3±0.48 72.3±3.94 0.23±0.01

GAT 63.4±0.68 0.27±0.01 62.1±0.64 60.6±7.65 0.21±0.01

GAT + SSMA 63.6±0.47 0.26±0.01 66.6±0.78 67.3±5.81 0.22±0.01

GATv2 63.1±1.34 0.27±0.01 62.8±0.85 56.7±8.25 0.18±0.01

GATv2 + SSMA 63.7±1.13 0.26±0.01 64.7±0.62 66.4±3.70 0.22±0.01

GIN 60.4±0.96 0.27±0.01 54.1±0.87 54.8±5.53 0.21±0.01

GIN + SSMA 62.5±1.37 0.26±0.02 66.4±1.52 67.0±5.79 0.22±0.01

GraphGPS 58.81±1.22 0.28±0.01 63.87±0.68 48.89±7.47 0.19±0.01

GraphGPS + SSMA 60.34±1.49 0.27±0.01 66.71±0.73 67.62±5.46 0.22±0.01

PNA 57.0±1.17 0.28±0.01 59.1±0.60 45.6±16.52 0.17±0.01

PNA + SSMA 61.1±1.75 0.27±0.03 66.3±0.81 63.9±3.72 0.21±0.01

Improvement (%) 3.02 4.21 8.9 23.86 13.4


