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Aggregation Functions

Aggregation functions are a key component in the design of message
passing graph neural networks (MPGNNs).
MPGNNs achieve their expressive power when the aggregation is
permutation invariant and distinguishes different neighborhoods.

[Xu et al., 2019, "How Powerful are Graph Neural Networks?"]
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Sum-Based Aggregations: Solid Theory, Poor Performance

Sum-based aggregations such as DeepSets have such theoretical
guarantees but underperform in practice.
In reality practitioners prefer more complex aggregations...

[Corso et al., 2020, "Principal Neighbourhood Aggregation for Graph Nets"]

We ask: why this happens?
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A Possible Explanation: Neighbor Mixing

We suggest that a possible explanation for this gap is the inability of
sum-based aggregators to "mix" features of distinct neighbors.
We define the neighbor mixing for the `-th aggregation output with
respect to neighbors (i , j) as:

mix(`)
i ,j :=

∥∥∥∥∥ ∂2

∂xi∂xj
γ(`)(x1, ..., xn)

∥∥∥∥∥
2
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A Possible Explanation: Neighbor Mixing
Intuitively, sum-based aggregators yield low mix(`)

i ,j values due to the
pooling across neighbors.

Namely, for γ(x1, ..., xn) =
∑n

k=1 φ(xk) we have:

∂2

∂xi∂xj

n∑
k=1

φ(`)(xk) = 0

Formally, to account for mixing that may occur subsequently:

Proposition (Sum-based aggregation mixing values upper bound)
Let γ(x1, ..., xn) = ρ (

∑n
k=1 φ(xk)) be a sum-based aggregation. Then:

mix(`)
i ,j ≤ ‖Jφ(xi)‖2 ·

∥∥∥∥∥Hρ(`)

( n∑
k=1

φ(xk)
)∥∥∥∥∥

2

· ‖Jφ(xj)‖2

Where Jφ(.) is the Jacobian matrix of φ and Hρ(`)(.) is the Hessian matrix
of the `-th output of ρ.
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In Search of an Alternative: DeepSets from a
Convolutional Point of View

Given a scalar multiset x = {x1, ..., xn}, define its corresponding
DeepSets polynomial:

px (t) :=
n∏

i=1
(t − xi)

The coefficients (ek(x))n
k=0 are permutation invariant and form an

ensemble of separators.
Representing (ek(x))n

k=0 by their DFT:

ζj(x) =
n∑

k=0
ek(x) · e− 2πij

n+1 k (j = 0, ..., n)
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In Search of an Alternative: DeepSets from a
Convolutional Point of View

The coefficients of px (t) can be computed by:
1 Transforming the coeff. of each pi(t) = (t − xi) to the Fourier domain
2 Performing elementwise multiplication.
3 Transforming back to the coefficients domain.

Equivalent to circular convolution!

Theorem (Representing scalar multisets)
Scalar multisets {x1, ..., xn} can be represented by an invariant-separating
map fconv :

fconv (x) =
n
~
i=1

h(xi)

Where h : R → Rn+1 is an affine map and ~ is the circular convolution
operator.
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The True Magic: Generalization to Vector Features

Generalized DeepSets Polynomial

Given a multiset X = {X1, ..., Xn} Encode each element Xi ∈ Rd as
a polynomial of another variable z :

Enc(Xi) =
d∑

j=1
Xij · z j−1

Generalized DeepSets polynomial:

pX(t, z) :=
n∏

i=1
(t − Enc(Xi)) =

∑
k,l

ek`(X) · tkz`

Where ek`(X) is the coefficient of tkz` in pX(t, z).
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Sequential Signal Mixing Aggregation (SSMA)

Combining our construction with an MLP compressor yields the
"vanilla" version of SSMA.
Implementation highlights:

1 The circular convolution is implemented by applying FFT, performing
product along the neighbors and then transforming back using IFFT.

2 Element-wise normalization after the Fourier-domain product by taking
geometric mean.

3 Low rank MLP using low-rank matrix factorization.
4 Neighbor selection technique that reduces the neighborhood to κ

neighbors using attention slots.
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SSMA Architecture
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Benchmarking SSMA

We test the effectiveness of SSMA by incorporating it into popular
MPGNN architectures.
We evaluate both original and augmented architectures across a wide
range of benchmarks.

Module ENZYMES ↑ PTC-MR ↑ MUTAG ↑ IMDB-B ↑ ZINC ↓

GCN 51.0±10.63 59.85±4.04 84.23±9.86 68.80±3.49 0.347±0.01
GCN + SSMA 54.83±7.55 62.29±9.33 89.79±6.71 75.2±2.9 0.280±0.02
GAT 50.67±4.92 65.53±8.41 75.51±11.72 51.0±6.07 0.386±0.025
GAT + SSMA 56.67±3.72 66.41±5.69 89.19±4.58 74.5±4.14 0.223±0.028
GATv2 44.83±5.96 56.47±7.57 77.26±13.15 47.0±5.27 0.396±0.006
GATv2 + SSMA 52.50±8.43 61.64±6.80 88.80±11.80 72.8±4.92 0.235±0.003
GIN 49.50±4.58 60.46±9.10 86.45±8.17 71.3±3.97 0.252±0.007
GIN + SSMA 51.69±8.04 61.28±9.23 90.51±6.97 74.1±5.02 0.222±0.003
GraphGPS 48.33±6.71 61.41±6.91 79.91±10.23 69.6±5.54 0.251±0.012
GraphGPS + SSMA 49.17±3.15 63.02±4.93 86.07±7.95 71.1±4.79 0.22±0.005
PNA 52.50±4.60 58.41±6.66 84.19±9.44 71.9±4.46 0.192±0.001
PNA + SSMA 52.92±7.34 62.14±5.54 88.29±8.46 74.1±4.23 0.172±0.001
ESAN - 69.2±6.5 91.1±7.0 77.1±3.0 0.102±0.003
ESAN + SSMA - 77.89±5.62 96.32±3.37 80.6±2.15 0.096±0.002

Improvement (%) 7.2 5.3 8.9 17.7 20.36
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Benchmarking SSMA

Module
LRGB OGB

Peptides-f Peptides-s Arxiv Products molpcba
AP ↑ MAE ↓ Accuracy ↑ Accuracy ↑ AP ↑

GCN 61.1±1.04 0.28±0.01 65.6±0.55 63.8±3.45 0.21±0.01
GCN + SSMA 63.3±1.42 0.26±0.02 66.3±0.48 72.3±3.94 0.23±0.01
GAT 63.4±0.68 0.27±0.01 62.1±0.64 60.6±7.65 0.21±0.01
GAT + SSMA 63.6±0.47 0.26±0.01 66.6±0.78 67.3±5.81 0.22±0.01
GATv2 63.1±1.34 0.27±0.01 62.8±0.85 56.7±8.25 0.18±0.01
GATv2 + SSMA 63.7±1.13 0.26±0.01 64.7±0.62 66.4±3.70 0.22±0.01
GIN 60.4±0.96 0.27±0.01 54.1±0.87 54.8±5.53 0.21±0.01
GIN + SSMA 62.5±1.37 0.26±0.02 66.4±1.52 67.0±5.79 0.22±0.01
GraphGPS 58.81±1.22 0.28±0.01 63.87±0.68 48.89±7.47 0.19±0.01
GraphGPS + SSMA 60.34±1.49 0.27±0.01 66.71±0.73 67.62±5.46 0.22±0.01
PNA 57.0±1.17 0.28±0.01 59.1±0.60 45.6±16.52 0.17±0.01
PNA + SSMA 61.1±1.75 0.27±0.03 66.3±0.81 63.9±3.72 0.21±0.01

Improvement (%) 3.02 4.21 8.9 23.86 13.4
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