Sequential Signal Mixing Aggregation for Message Passing Graph Neural Networks

Mitchell Keren Taraday¹, Almog David¹, Chaim Baskin²

¹Technion

²Ben-Gurion University of the Negev

October 29, 2024

- Aggregation functions are a key component in the design of message passing graph neural networks (MPGNNs).
- MPGNNs achieve their expressive power when the aggregation is permutation invariant and distinguishes different neighborhoods.

[Xu et al., 2019, "How Powerful are Graph Neural Networks?"]

- Sum-based aggregations such as DeepSets have such theoretical guarantees but underperform in practice.
- In reality practitioners prefer more complex aggregations...

• We ask: why this happens?

- We suggest that a possible explanation for this gap is the inability of sum-based aggregators to "mix" features of distinct neighbors.
- We define the neighbor mixing for the *ℓ*-th aggregation output with respect to neighbors (*i*, *j*) as:

$$\operatorname{mix}_{i,j}^{(\ell)} := \left\| \frac{\partial^2}{\partial x_i \partial x_j} \gamma^{(\ell)}(x_1, ..., x_n) \right\|_2$$

A Possible Explanation: Neighbor Mixing

- Intuitively, sum-based aggregators yield low ${\rm mix}_{i,j}^{(\ell)}$ values due to the pooling across neighbors.
 - Namely, for $\gamma(x_1, ..., x_n) = \sum_{k=1}^n \phi(x_k)$ we have:

$$\frac{\partial^2}{\partial x_i \partial x_j} \sum_{k=1}^n \phi^{(\ell)}(x_k) = 0$$

A Possible Explanation: Neighbor Mixing

- Intuitively, sum-based aggregators yield low ${\rm mix}_{i,j}^{(\ell)}$ values due to the pooling across neighbors.
 - Namely, for $\gamma(x_1,...,x_n) = \sum_{k=1}^n \phi(x_k)$ we have:

$$\frac{\partial^2}{\partial x_i \partial x_j} \sum_{k=1}^n \phi^{(\ell)}(x_k) = 0$$

• Formally, to account for mixing that may occur subsequently:

Proposition (Sum-based aggregation mixing values upper bound)

Let $\gamma(x_1, ..., x_n) = \rho(\sum_{k=1}^n \phi(x_k))$ be a sum-based aggregation. Then:

$$\operatorname{mix}_{i,j}^{(\ell)} \leq \left\| J_{\phi}(x_i) \right\|_2 \cdot \left\| H_{\rho^{(\ell)}}\left(\sum_{k=1}^n \phi(x_k) \right) \right\|_2 \cdot \left\| J_{\phi}(x_j) \right\|_2$$

Where $J_{\phi}(.)$ is the Jacobian matrix of ϕ and $H_{\rho^{(\ell)}}(.)$ is the Hessian matrix of the ℓ -th output of ρ .

 Given a scalar multiset x = {x₁,...,x_n}, define its corresponding DeepSets polynomial:

$$p_{x}(t) := \prod_{i=1}^{n} (t - x_i)$$

- The coefficients (e_k(x))ⁿ_{k=0} are permutation invariant and form an ensemble of separators.
- Representing $(e_k(x))_{k=0}^n$ by their DFT:

$$\zeta_j(x) = \sum_{k=0}^n e_k(x) \cdot e^{-\frac{2\pi i j}{n+1}k} \quad (j = 0, ..., n)$$

- The coefficients of $p_x(t)$ can be computed by:
 - **(**) Transforming the coeff. of each $p_i(t) = (t x_i)$ to the Fourier domain
 - 2 Performing elementwise multiplication.
 - Transforming back to the coefficients domain.

- The coefficients of $p_x(t)$ can be computed by:
 - **(**) Transforming the coeff. of each $p_i(t) = (t x_i)$ to the Fourier domain
 - 2 Performing elementwise multiplication.
 - **③** Transforming back to the coefficients domain.
- Equivalent to circular convolution!

- The coefficients of $p_x(t)$ can be computed by:
 - **(**) Transforming the coeff. of each $p_i(t) = (t x_i)$ to the Fourier domain
 - 2 Performing elementwise multiplication.
 - Transforming back to the coefficients domain.
- Equivalent to circular convolution!

Theorem (Representing scalar multisets)

Scalar multisets $\{x_1, ..., x_n\}$ can be represented by an invariant-separating map f_{conv} :

$$f_{conv}(x) = \bigotimes_{i=1}^{n} h(x_i)$$

Where $h : \mathbb{R} \to \mathbb{R}^{n+1}$ is an <u>affine</u> map and \circledast is the circular convolution operator.

イロト イポト イヨト イヨト

э

The True Magic: Generalization to Vector Features

Generalized DeepSets Polynomial

Given a multiset $\mathbf{X} = {\mathbf{X}_1, ..., \mathbf{X}_n}$ Encode each element $\mathbf{X}_i \in \mathbb{R}^d$ as a polynomial of *another* variable *z*:

$$\mathsf{Enc}(\mathbf{X}_i) = \sum_{j=1}^d \mathbf{X}_{ij} \cdot z^{j-1}$$

Generalized DeepSets polynomial:

$$p_{\mathbf{X}}(t,z) := \prod_{i=1}^{n} (t - \mathsf{Enc}(\mathbf{X}_i)) = \sum_{k,l} e_{k\ell}(\mathbf{X}) \cdot t^k z^\ell$$

Where $e_{k\ell}(\mathbf{X})$ is the coefficient of $t^k z^{\ell}$ in $p_{\mathbf{X}}(t, z)$.

- Combining our construction with an MLP compressor yields the "vanilla" version of SSMA.
- Implementation highlights:
 - The circular convolution is implemented by applying FFT, performing product along the neighbors and then transforming back using IFFT.
 - Element-wise normalization after the Fourier-domain product by taking geometric mean.
 - Solution Sectorization Sectorization Sectorization.
 - Neighbor selection technique that reduces the neighborhood to κ neighbors using attention slots.

SSMA Architecture

October 29, 2024

A D N A B N A B N A B N

æ

Benchmarking SSMA

- We test the effectiveness of SSMA by incorporating it into popular MPGNN architectures.
- We evaluate both original and augmented architectures across a wide range of benchmarks.

Module	ENZYMES \uparrow	PTC-MR ↑	MUTAG ↑	IMDB-B ↑	$zinc \downarrow$
GCN	51.0±10.63	59.85±4.04	84.23±9.86	68.80±3.49	0.347±0.01
GCN + SSMA	54.83±7.55	62.29±9.33	89.79±6.71	75.2±2.9	0.280±0.02
GAT	50.67±4.92	65.53±8.41	75.51±11.72	51.0 ± 6.07	0.386±0.025
GAT + SSMA	56.67±3.72	66.41±5.69	89.19±4.58	74.5±4.14	0.223±0.028
GATv2	44.83±5.96	56.47±7.57	77.26±13.15	47.0±5.27	0.396 ± 0.006
GATv2 + SSMA	52.50±8.43	61.64±6.80	88.80±11.80	72.8±4.92	0.235±0.003
GIN	49.50±4.58	60.46±9.10	86.45±8.17	71.3 ± 3.97	0.252 ± 0.007
GIN + SSMA	51.69±8.04	61.28±9.23	90.51±6.97	74.1±5.02	0.222±0.003
GraphGPS	48.33±6.71	61.41 ± 6.91	79.91±10.23	69.6±5.54	0.251 ± 0.012
GraphGPS + SSMA	49.17±3.15	63.02±4.93	86.07±7.95	71.1±4.79	0.22 ± 0.005
PNÁ	52.50±4.60	58.41 ± 6.66	84.19±9.44	71.9 ± 4.46	0.192 ± 0.001
PNA + SSMA	52.92±7.34	62.14±5.54	88.29±8.46	74.1±4.23	0.172±0.001
ESAN	-	69.2±6.5	91.1±7.0	77.1 ± 3.0	0.102 ± 0.003
ESAN + SSMA	-	77.89±5.62	96.32±3.37	80.6±2.15	0.096±0.002
Improvement (%)	7.2	5.3	8.9	17.7	20.36

Taraday et al.

Sequential Signal Mixing Aggregation

October 29, 2024

11 / 12

Module	LRGB		OGB		
	Peptides-f	Peptides-s	Arxiv	Products	molpcba
	AP ↑	$\textbf{MAE}\downarrow$	Accuracy \uparrow	Accuracy \uparrow	AP ↑
GCN	61.1±1.04	0.28±0.01	65.6±0.55	63.8±3.45	0.21±0.01
GCN + SSMA	63.3±1.42	0.26±0.02	66.3±0.48	72.3±3.94	0.23±0.01
GAT	63.4±0.68	0.27 ± 0.01	62.1 ± 0.64	60.6±7.65	0.21 ± 0.01
GAT + SSMA	63.6±0.47	0.26±0.01	66.6±0.78	67.3±5.81	0.22±0.01
GATv2	63.1±1.34	0.27 ± 0.01	62.8 ± 0.85	56.7±8.25	0.18 ± 0.01
GATv2 + SSMA	63.7 ±1.13	0.26±0.01	64.7±0.62	66.4±3.70	0.22 ± 0.01
GIN	60.4 ± 0.96	0.27 ± 0.01	54.1 ± 0.87	54.8±5.53	0.21 ± 0.01
GIN + SSMA	62.5 ±1.37	0.26±0.02	66.4±1.52	67.0±5.79	0.22 ± 0.01
GraphGPS	58.81 ± 1.22	0.28 ± 0.01	63.87 ± 0.68	48.89±7.47	0.19 ± 0.01
GraphGPS + SSMA	60.34±1.49	0.27±0.01	66.71±0.73	67.62±5.46	0.22 ± 0.01
PNA	57.0±1.17	0.28 ± 0.01	59.1 ± 0.60	45.6±16.52	0.17 ± 0.01
PNA + SSMA	61.1 ±1.75	0.27±0.03	66.3±0.81	63.9 ±3.72	0.21±0.01
Improvement (%)	3.02	4.21	8.9	23.86	13.4

→

Image: A matrix and a matrix

3